
ORCID
and

repository integrations
Gabriela Mejias

LIBSENSE Community Call

25 May 2021

@gabioshka
@ORCID_Org

ORCID APIs I
All of the ORCID APIs are based on the same set of technologies:

• REST: ORCID APIs are “RESTful”; they follow the constraints of

the REST architectural style

• OAuth: ORCID APIs use the OAuth 2.0 authentication protocol

to grant client applications access to users’ ORCID records

• XML/JSON: ORCID APIs support data exchange in XML and

JSON, as well as RDF, GZIP and Turtle

https://info.orcid.org/documentation/api-tutorials/
https://github.com/ORCID/ORCID-Source/tree/master/orcid-api-web

https://info.orcid.org/documentation/api-tutorials/
https://github.com/ORCID/ORCID-Source/tree/master/orcid-api-web

ORCID APIs II
➔ Sandbox (Testing)

https://orcid.org/content/register-client-application-sandbox

➔ Production (Live Registry)
https://orcid.org/content/register-client-application-production-trusted-party

Public API
Freely available

Member API - Basic
Basic membership

Member API -
Premium
Premium &
Consortium
membership

•Authenticate: Get a user’s authenticated ORCID iD
•Read (Public): Search/retrieve public data
•Create: Facilitate creation of new ORCID records (via
on-demand process)

•Read (Limited): Search/retrieve limited-access data
•Add: Post new items to a record
•Update: Edit or delete items you previously added

•Webhooks: Receive notifications of updates
•Monthly reports (including email stats)
•Access to monthly public data file

https://members.orcid.org/api
https://orcid.org/about/membership/comparison

https://orcid.org/content/register-client-application-sandbox
https://orcid.org/content/register-client-application-production-trusted-party
https://support.orcid.org/hc/en-us/articles/360006897174-Register-a-public-API-client-application
https://members.orcid.org/api
https://orcid.org/about/membership/comparison

Best practices
● Support collecting authenticated ORCID iDs

○ Support other ways of obtaining ORCID iDs, including in mediated
deposits and bulk uploads by repository managers, as well as automated
deposits from other systems

● Allow administrators to request authenticated ORCID iDs and ORCID record
update permission from authors and co-authors, in cases where iDs are
missing or have not been authenticated

● Support displaying ORCID iDs wherever user/contributor information is
displayed

● Support pulling and pushing information to and from ORCID
● Provide testing, logging and reporting features to help administrators

troubleshoot issues and manage ORCID-related data in their repository
● Support exposing ORCID iDs in metadata outputs, such as OAI-PMH XML,

wherever possible
● Provide documentation about ORCID features, for both administrators

and end users

https://doi.org/10.23640/07243.7777274.v3

https://doi.org/10.23640/07243.7777274.v3

Collecting iDs

● Via direct interaction with a user: An authenticated iD (and, optionally,
permission to update the user’s ORCID record) is obtained from a user through
an OAuth interaction, facilitated by the repository platform

● Via mediated deposit: An unauthenticated iD is associated with an item or
user by an individual other than the iD owner. Since an OAuth interaction did
not take place, the repository platform instance does not have permission to
update the user’s ORCID record

● Via external 3rd party import/deposit: An iD is extracted from metadata
obtained via import or deposit from an external source. This iD may or may
not have been authenticated by the metadata source. Since an OAuth
interaction did not take place, the repository platform instance does not have
permission to update the user’s ORCID record.

Displaying iDs

● ORCID iDs should be displayed where user/contributor
information is displayed

● Authenticated iDs should be displayed according to the
our guidelines

● Unauthenticated iDs should be displayed with an
indication such as “(unconfirmed)”, “(unverified)” or
“(unauthenticated)”, or the equivalent in the local
language

● Include ORCID iDs in machine-readable metadata

Pulling/Pushing data

PULL

• Request & use permission to read information
• Public API: read-public
• Member API: read-limited
• Auto-populate your systems & forms to save users’

time

PUSH

● Request permission to write data
○ Member API: /activities/update and /person/update
○ Store put codes
○ Include a work identifier

Integrations out of the box

● Brocade
● DSpace via KAUST solution

○ Part 1 Part 2
● Eprints
● Figshare via DataCite auto update (user enabled)
● Haplo
● Islandora
● Zenodo via DataCite auto update (user enabled)
● Via BASE (user enabled)

https://anet.be/doc/anet/repository/html/orcid.html
https://github.com/kaust-library/ioi
https://atmire.github.io/expanded-ORCID-support/#/
https://wiki.eprints.org/w/ORCID_Support
https://www.haplo.com/repository
https://www.drupal.org/project/orcid

Custom integrations

● Get access to the ORCID Sandbox API
https://info.orcid.org/register-a-client-application-sandbox-member-api/

● Plan/ test our recommended workflow
https://info.orcid.org/documentation/workflows/repository-systems/

● Launch and communicate

And don’t forget to let us know about your use case!󰗇
https://spaces.wacren.net/display/LIBSENSE/PID+Implementation+use+cases

https://info.orcid.org/register-a-client-application-sandbox-member-api/
https://info.orcid.org/documentation/workflows/repository-systems/
https://spaces.wacren.net/display/LIBSENSE/PID+Implementation+use+cases

 📩 g.mejias(at)orcid.org
 @gabioshka

Thanks! Questions?

ℹ https://support.orcid.org/hc/en-us

https://support.orcid.org/hc/en-us

